Mathematics (MEI)

Mark Scheme for June 2010

$1 \quad \begin{aligned} \int_{0}^{\pi / 6} \cos 3 x \mathrm{~d} x & =\left[\frac{1}{3} \sin 3 x\right]_{0}^{\pi / 6} \\ & =\frac{1}{3} \sin \frac{\pi}{2}-0 \\ = & 1 / 3 \end{aligned}$	M1 B1 A1cao [3]	$\begin{aligned} & k \sin 3 x, k>0, k \neq 3 \\ & k=(\pm) 1 / 3 \\ & 0.33 \text { or better } \end{aligned}$	or M1 for $u=3 x \Rightarrow \int \frac{1}{3} \cos u \mathrm{~d} u$ condone 90° in limit or M1 for $\left[\frac{1}{3} \sin u\right]$ so: $\sin 3 x$: M1B0, $-\sin 3 x$: M0B0, $\pm 3 \sin 3 x$: M0B0, $-1 / 3 \sin 3 x$: M0B1			
$2 \quad \mathrm{fg}(x)=\|x+1\| \quad \operatorname{gf}(x)=\|x\|+1$	$\begin{aligned} & \text { B1 B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[4]} \end{aligned}$	```soi from correctly-shaped graphs (i.e. without intercepts) graph of \(\|x+1	\) only graph of \(x	+1\)```	but must indicate which is which bod gf if negative x values are missing ' V ' shape with $(-1,0)$ and $(0,1)$ labelled ' V ' shape with $(0,1)$ labelled $(0,1)$
$\begin{aligned} & \text { 3(i) } \quad y=\left(1+3 x^{2}\right)^{1 / 2} \\ & \Rightarrow \quad d y / d x= \\ & =\frac{1}{2}\left(1+3 x^{2}\right)^{-1 / 2} \cdot 6 x \\ & \\ & =3 x\left(1+3 x^{2}\right)^{-1 / 2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	chain rule $1 / 2 u^{-1 / 2}$ o.e., but must be ' 3 '	can isw here			
$\text { (ii) } \quad \begin{aligned} & y=x\left(1+3 x^{2}\right)^{1 / 2} \\ & \Rightarrow \quad d y / d x=x \cdot \frac{3 x}{\sqrt{1+3 x^{2}}}+1 \cdot\left(1+3 x^{2}\right)^{1 / 2} \\ &=\frac{3 x^{2}+1+3 x^{2}}{\sqrt{1+3 x^{2}}} \\ &=\frac{1+6 x^{2}}{\sqrt{1+3 x^{2}}} * \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft } \\ & \text { M1 } \\ & \\ & \text { E1 } \\ & \text { [4] } \end{aligned}$	product rule ft their $\mathrm{d} y / \mathrm{d} x$ from (i) common denominator or factoring $\left(1+3 x^{2}\right)^{-1 / 2}$ www	must show this step for M1 E1			

$\begin{aligned} & \text { 4 } \quad p=100 / x=100 x^{-1} \\ & \Rightarrow \quad \mathrm{~d} p / \mathrm{d} x=-100 x^{-2}=-100 / x^{2} \\ & \\ & \\ & \\ & \mathrm{~d} p / \mathrm{d} t=\mathrm{d} p / \mathrm{d} x \times \mathrm{d} x / \mathrm{d} t \\ & \mathrm{~d} x / \mathrm{d} t=10 \end{aligned}, \begin{aligned} & \text { When } x=50, \mathrm{~d} p / \mathrm{d} x=\left(-100 / 50^{2}\right) \\ & \Rightarrow \mathrm{d} p / \mathrm{d} t=10 \times-0.04=-0.4 \end{aligned}$	M1 A1 M1 B1 M1dep A1cao [6]	attempt to differentiate $\begin{aligned} & -100 x^{-2} \text { o.e. } \\ & \text { o.e. soi } \end{aligned}$ soi $\text { substituting } x=50 \text { into their } \mathrm{d} p / \mathrm{d} x \operatorname{dep} 2^{\text {nd }} \mathrm{M} 1$ o.e. e.g. decreasing at 0.4	condone poor notation if chain rule correct or $x=50+10 t$ B1 $\begin{aligned} & \Rightarrow P=100 / x=100 /(50+10 t) \\ & \Rightarrow \mathrm{d} P / \mathrm{d} t=-100(50+10 t)^{-2} \times 10=-1000 /(50+10 t)^{-2} \mathrm{M} 1 \end{aligned}$ A1 When $t=0, \mathrm{~d} P / \mathrm{d} t=-1000 / 50^{2}=-0.4 \mathrm{~A} 1$
$\begin{array}{ll} \mathbf{5} & y^{3}=x y-x^{2} \\ \Rightarrow & 3 y^{2} \mathrm{~d} y / \mathrm{d} x=x \mathrm{~d} y / \mathrm{d} x+y-2 x \\ \Rightarrow & 3 y^{2} \mathrm{~d} y / \mathrm{d} x-x \mathrm{~d} y / \mathrm{d} x=y-2 x \\ \Rightarrow & \left(3 y^{2}-x\right) \mathrm{d} y / \mathrm{d} x=y-2 x \\ \Rightarrow & \mathrm{~d} y / \mathrm{d} x=(y-2 x) /\left(3 y^{2}-x\right)^{*} \\ & \\ & \mathrm{TP} \text { when } \mathrm{d} y / \mathrm{d} x=0 \Rightarrow y-2 x=0 \\ \Rightarrow & y=2 x \\ \Rightarrow & (2 x)^{3}=x .2 x-x^{2} \\ \Rightarrow & 8 x^{3}=x^{2} \\ \Rightarrow & x=1 / 8 * \text { (or } 0) \end{array}$	B1 B1 M1 E1 M1 M1 E1 [7]	$3 y^{2} \mathrm{~d} y / \mathrm{d} x$ $x \mathrm{~d} y / \mathrm{d} x+y-2 x$ collecting terms in $\mathrm{d} y / \mathrm{d} x$ only or $x=1 / 8$ and $\mathrm{d} y / \mathrm{d} x=0 \Rightarrow y=1 / 4$ or $(1 / 4)^{3}=(1 / 8)(1 / 4)-(1 / 8)^{2}$ or verifying e.g. $1 / 64=1 / 64$	must show ' $x \mathrm{~d} y / \mathrm{d} x+y$ ' on one side or $x=1 / 8 \Rightarrow y^{3}=(1 / 8) y-1 / 64 \mathrm{M} 1$ verifying that $y=1 / 4$ is a solution (must show evidence*) M1 $\Rightarrow \mathrm{dy} / \mathrm{d} x=(1 / 4-2(1 / 8)) /(\ldots)=0 \mathrm{E} 1$ *just stating that $y=1 / 4$ is M1 M0 E0
$\begin{array}{ll} 6 & \mathrm{f}(x)=1+2 \sin 3 x=y \quad x \leftrightarrow y \\ & x=1+2 \sin 3 y \\ \Rightarrow \quad & \sin 3 y=(x-1) / 2 \\ \Rightarrow & 3 y=\arcsin [(x-1) / 2] \\ \Rightarrow & y= \\ =\frac{1}{3} \arcsin \left[\frac{x-1}{2}\right] \text { so } \mathrm{f}^{-1}(x)=\frac{1}{3} \arcsin \left[\frac{x-1}{2}\right] \\ & \text { Range of } \mathrm{f} \text { is }-1 \text { to } 3 \\ \Rightarrow \quad & -1 \leq x \leq 3 \end{array}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	attempt to invert must be $y=\ldots$ or $\mathrm{f}^{-1}(x)=\ldots$ or $-1 \leq(x-1) / 2 \leq 1$ must be ' x ', not y or $\mathrm{f}(x)$	at least one step attempted, or reasonable attempt at flow chart inversion (or any other variable provided same used on each side) condone <'s for M1 allow unsupported correct answers; -1 to 3 is M1 A0
7 (A) True , (B) True , (C) False Counterexample, e.g. $\sqrt{ } 2+(-\sqrt{ } 2)=0$	B2,1,0 B1 [3]		

8(i) When $x=1, y=3 \ln 1+1-1^{2}$ $=0$	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$		
$\begin{array}{ll} \hline \text { (ii) } & \frac{d y}{d x}=\frac{3}{x}+1-2 x \\ \Rightarrow & \text { At R, } \frac{d y}{d x}=0=\frac{3}{x}+1-2 x \\ \Rightarrow & 3+x-2 x^{2}=0 \\ \Rightarrow & (3-2 x)(1+x)=0 \\ \Rightarrow & x=1.5, \text { (or }-1) \\ \Rightarrow & y=3 \ln 1.5+1.5-1.5^{2} \\ & =0.466(3 \text { s.f.) } \\ & \frac{d^{2} y}{d x^{2}}=-\frac{3}{x^{2}}-2 \end{array}$ When $x=1.5, \mathrm{~d}^{2} y / \mathrm{d} x^{2}(=-10 / 3)<0 \Rightarrow \max$	M1 A1cao M1 M1 A1 M1 A1cao B1ft E1 [9]	$\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ re-arranging into a quadratic $=0$ factorising or formula or completing square substituting their x ft their $\mathrm{d} y / \mathrm{d} x$ on equivalent work www - don't need to calculate 10/3	SC1 for $x=1.5$ unsupported, SC3 if verified but condone rounding errors on 0.466
	M1 A1 A1 B1 B1ft M1dep A1 cao [7]	parts condone no c correct integral and limits (soi) $\left[3 x \text { their }{ }^{\prime} x \ln x-x^{\prime}+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]$ substituting correct limits dep $1^{\text {st }}$ B1	allow correct result to be quoted (SC3)

9(i) $(0,1 / 2)$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	allow $y=1 / 2$, but not $(x=) \frac{1}{1 / 2}$ or $(1 / 2,0)$ nor $\mathrm{P}=1 / 2$	
$\text { (ii) } \begin{aligned} \frac{d y}{d x} & =\frac{\left(1+\mathrm{e}^{2 x}\right) 2 \mathrm{e}^{2 x}-\mathrm{e}^{2 x} \cdot 2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}} \\ & =\frac{2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}} \end{aligned}$ When $x=0, \mathrm{~d} y / \mathrm{d} x=2 \mathrm{e}^{0} /\left(1+\mathrm{e}^{0}\right)^{2}=1 / 2$	M1 A1 A1 B1ft [4]	Quotient or product rule correct expression - condone missing bracket cao - mark final answer follow through their derivative	product rule: $\frac{d y}{d x}=\mathrm{e}^{2 x} \cdot 2 \mathrm{e}^{2 x}(-1)\left(1+\mathrm{e}^{2 x}\right)^{-2}+2 \mathrm{e}^{2 x}\left(1+\mathrm{e}^{2 x}\right)^{-1}$ $-\frac{2 \mathrm{e}^{2 x}}{\left(1+\mathrm{e}^{2 x}\right)^{2}}$ from $(u \mathrm{~d} v-v \mathrm{~d} u) / v^{2} \mathrm{SC} 1$
$\text { (iii) } \begin{aligned} A & =\int_{0}^{1} \frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{2 x}} \mathrm{~d} x \\ & =\left[\frac{1}{2} \ln \left(1+\mathrm{e}^{2 x}\right)\right]_{0}^{1} \end{aligned}$ or let $u=1+\mathrm{e}^{2 x}, \mathrm{~d} u / \mathrm{d} x=2 \mathrm{e}^{2 x}$ $\begin{aligned} \Rightarrow \quad A & =\int_{2}^{1+\mathrm{e}^{2}} \frac{1 / 2}{u} \mathrm{~d} u=\left[\frac{1}{2} \ln u\right]_{2}^{1+\mathrm{e}^{2}} \\ & =\frac{1}{2} \ln \left(1+\mathrm{e}^{2}\right)-\frac{1}{2} \ln 2 \\ & =\frac{1}{2} \ln \left[\frac{1+\mathrm{e}^{2}}{2}\right] * \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [5] } \end{aligned}$	correct integral and limits (soi) $\begin{aligned} & k \ln \left(1+\mathrm{e}^{2 x}\right) \\ & k=1 / 2 \end{aligned}$ or $v=\mathrm{e}^{2 x}, \mathrm{~d} v / \mathrm{d} x=2 \mathrm{e}^{2 x}$ o.e. $[1 / 2 \ln u]$ or $[1 / 2 \ln (v+1)]$ substituting correct limits www	condone no $\mathrm{d} x$ allow missing $\mathrm{d} x$'s or incompatible limits, but penalise missing brackets
(iv) $\mathrm{g}(-x)=\frac{1}{2}\left[\frac{\mathrm{e}^{-x}-\mathrm{e}^{x}}{\mathrm{e}^{-x}+\mathrm{e}^{x}}\right]=-\frac{1}{2}\left[\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right]=-\mathrm{g}(x)$ Rotational symmetry of order 2 about O	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \\ & \text { B1 } \\ & {[3]} \end{aligned}$	substituting $-x$ for x in $g(x)$ completion www - taking out -ve must be clear must have 'rotational' 'about O', 'order 2' (oe)	not $\mathrm{g}(-x) \neq \mathrm{g}(x)$. Condone use of f for g .
$\text { (v)(A) } \begin{aligned} g(x)+\frac{1}{2}=\frac{1}{2} \cdot \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}+\frac{1}{2} & =\frac{1}{2} \cdot\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}+\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right) \\ & =\frac{1}{2} \cdot\left(\frac{2 \mathrm{e}^{x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}\right) \\ & =\frac{\mathrm{e}^{x} \cdot \mathrm{e}^{x}}{\mathrm{e}^{x}\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}=\frac{\mathrm{e}^{2 x}}{\mathrm{e}^{2 x}+1}=\mathrm{f}(x) \end{aligned}$ (B) Translation $\binom{0}{1 / 2}$ (C) Rotational symmetry [of order 2]about P	M1 A1 E1 M1 A1 B1 [6]	combining fractions (correctly) translation in y direction up $1 / 2$ unit dep 'translation' used o.e. condone omission of $180^{\circ} \%$ order 2	allow 'shift', 'move' in correct direction for M1. $\binom{0}{1 / 2}$ alone is SC1.

